

CO-TRANSCRIPTIONAL ASSEMBLY OF MODIFIED RNA NANOPARTICLES

SUMMARY

The National Cancer Institute's Nanobiology Program seeks parties interested in collaborative research to co-develop a method to generate RNA molecules suitable for nanoparticle and biomedical applications.

REFERENCE NUMBER

E-223-2012

PRODUCT TYPE

- Therapeutics
- Diagnostics

KEYWORDS

- Drug Delivery
- RNA
- Nanoparticle

COLLABORATION OPPORTUNITY

This invention is available for licensing.

CONTACT

John D. Hewes NCI - National Cancer Institute 240-276-5515

John.Hewes@nih.gov

DESCRIPTION OF TECHNOLOGY

The National Cancer Institute's Nanobiology Program seeks parties interested in collaborative research to co-develop a method to generate RNA molecules suitable for nanoparticle and biomedical applications.

The development of nanoparticles as a method of drug delivery is paving the way for precise targeted therapy making it a more attractive and effective method for treating cancer. However, the current methods of designing RNA nanoparticles are limited by three factors: 1) the cost and size limitations associated with chemical synthesis of RNA; 2) the complexity of RNA nanoparticle production; and 3) low retention time of RNA nanoparticles in the patient bloodstream due to their susceptibility to nuclease degradation.

NCI scientists have developed a method to overcome these challenges in RNA nanoparticle design. The method entails generating RNA nanoparticles having modified nucleotides and/or having increased nuclease resistance where the RNA nanoparticles are formed co-transcriptionally by T7 RNA polymerase in the presence of manganese ions. In essence, the technology results in high-yield production of chemically modified RNA nanoparticles functionalized with siRNAs that are resistant to nucleases from human blood serum

POTENTIAL COMMERCIAL APPLICATIONS

• Inexpensive and efficient method of producing chemically modified RNA nanoparticles for diagnostic or therapeutic applications.

COMPETITIVE ADVANTAGES

- Reduces the cost and size limitations of solid-phase RNA synthesis.
- Simplifies production of complex RNA nanoparticles.
- Increases retention time of RNA nanoparticles.

INVENTOR(S)

• Bruce A. Shapiro (NCI), Kirill Afonin (NCI), Maria Kireeva (NCI), Mikhail Kashlev (NCI), Luc Jaeger (Univ California, Santa Barbara), Wade Grabow (Univ California, Santa Barbara)

DEVELOPMENT STAGE

Discovery (Lead Identification)

PUBLICATIONS

- Afonin KA, et al. [PMID 23016824]
- Grabow WW, et al. "RNA Nanotechnology in Nanomedicine," in Nanomedicine and Drug Delivery (Recent Advances in Nanoscience and Nanotechnology), ed. M Sebastian, et al. (New Jersey: Apple Academic Press, 2012), 208-220. [Book Chapter]

PATENT STATUS

Not Patented

RELATED TECHNOLOGIES

- E-059-2009 In Silico Design of RNA Nanoparticles
- E-038-2012 Selective Treatment of Cancer Cells, HIV and Other RNA Viruses
- E-039-2012 Targeted Nanoparticles for the Treatment of Virus-infected or Cancerous Cells

THERAPEUTIC AREA

Cancer/Neoplasm